MATH 150: Answers to even numbered HW assignment problems

Section 1.1

4: (a) When $1000 is spent on advertising, the number of sales per month is 3500; (b) I; (c) the number of sales if no money is spent on advertising.

10: $f(5) = 4.1.$

12 (a) and (b):

![Expected return vs. Risk graph]

14: (a) At $t = 30$ minutes the temperature was 10°C. (b) Initial temperature of the object was a°C. At time $t = b$ the object’s temperature is 0°C.

18: (a) III; (b) Vertical intercept represents the temperature of potato at $t = 0.$

20:

![Heart rate vs. time graph]

Section 1.2

2: Slope is $-3/2$, vertical intercept is 4.

8: $y = -7 + 3x.$

12: (a) $P = 30,700 + 850t$; (b) $P(10) = 39,200$. (c) Population will reach 45,000 in about 16.82 years ($t = 16.82$), or during the year 2016.
Section 1.3
2: concave up.
6: (a) intervals between D and E, between H and I; (b) intervals between A and B, between E and F; (c) intervals between C and D, between G and H; (d) intervals between B and C, between F and G;
18: (a) 16.4 billion $; (b) 3.28 billion $ per year; (c) -6.0 billion $ between 2000 and 2001.

Section 1.5
2: (a) initial amount = 100; growth; growth rate = 7 % = 0.07; (b) initial amount = 5.3; growth; growth rate = 5.4 % = 0.054; (c) initial amount = 3500; decay; decay rate = - 7 % = - 0.07; (b) initial amount = 12; decay; decay rate = -12 % = 0.12.
6: (a) $Q = 30 - 2t$,

(b) $Q = 30 \times (0.88)^t$,

\begin{center}
\begin{tabular}{c|c|c}
\hline
t (days) & 15 & \hline
\hline
Q (grams) & 30 & \hline
\end{tabular}
\end{center}
10: (a) II; (b) I; (a) III; (b) V; IV shows exponential decay; VI shows linear decay.
18: (a) neither; (b) exponential: \(s(t) = 30.12 \times (0.6)^t \); (c) linear: \(g(u) = -1.5u + 27 \).
24: (a) The investment was worth $3486.78 after 10 years; (b) it will take about 11 years to get the investment back to $10,000.

Section 1.6
8: \(t = \ln 10 \approx 2.3 \).
22: (a) Town D is growing the fastest. (b) Town C is largest at \(t = 0 \). (c) Town B is decreasing in size.
24. \(P = 2 \times (1/\sqrt{e})^t \approx 2 \times (0.6065)^t \).

Section 1.8
2: (a) \(f(t + 1) = (t + 1)^2 + 1 = t^2 + 2t + 2 \), (b) \(f(t^2 + 1) = (t^2 + 1)^2 + 1 = t^4 + 2t^2 + 2 \), (c) \(f(2) = 5 \), (d) \(2f(t) = 2t^2 + 2 \), (e) \([f(t)]^2 + 1 = t^4 + 2t^2 + 2 \).
8: (a) \(f(g(x)) = 2x^2 + 12x + 18 \), (b) \(g(f(x)) = 2x^2 + 3 \), (c) \(f(f(x)) = 8x^4 \).
12: (a) \(y = u^6 \), where \(u = 5t^2 - 2 \); (b) \(P = 12e^u \), where \(u = -0.6t \); (c) \(C = 12 \ln(u) \), where \(u = q^3 + 1 \).
30: (a) \(f(g(0)) = f(2) = 3 \); (b) \(f(g(1)) = f(3) = 4 \); (c) \(f(g(2)) = f(5) = 11 \); (d) \(g(f(2)) = g(3) = 8 \); (e) \(g(f(3)) = g(4) = 12 \).

Section 1.9
2: yes, \(y = 3x^{-2} \), \(k = 3 \), \(p = -2 \).
6: yes, \(y = (5/2)x^{-1/2} \), \(k = 5/2 \), \(p = -1/2 \).
14: \(E = kv^3 \), where \(k \) is a constant.

Review for Chapter 1
6: (b) 200; (c) 80; (d) \(0 \leq 0 \leq 560 \); (e) decreasing; (f) concave down.
24: \(y = 0.4x + 2 \).
32: \(g(x) = 30.8 - 3.2x \) could be linear; \(h(x) = 15 \cdot 0.6^x \) could be exponential; \(f(x) \) is neither.

Section 2.1
4: slope -3: point F; slope -1: point C; slope 0: point E; slope 1/2: point A; slope 1: point B; slope 2: point D.
6: (a) The average rate of change between \(x = 0 \) and \(x = 3 \) is greater than the average rate of change between \(x = 3 \) and \(x = 5 \) since slope of \(AB \) > slope of \(BC \)

(b) The function is increasing faster at \(x = 1 \) than at \(x = 4 \). Thus, instantaneous rate of change at \(x = 1 \) is greater than that at \(x = 4 \).

14:
\[
\begin{array}{cccccc}
 x & d & b & c & a & e \\
 f'(x) & 0 & 0.5 & 2 & -0.5 & -2 \\
\end{array}
\]

24: (a) \(f(4) > f(3) \); (b) \(f(2) - f(1) > f(3) - f(2) \); (c)
\[
\frac{f(2) - f(1)}{2 - 1} > \frac{f(3) - f(1)}{3 - 1};
\]

(d) \(f'(1) > f'(4) \).
Section 2.2
10: IV.
14: (a) $f'(2) \approx 3$; (b) $f'(x)$ is positive for $0 < x < 4$ and is negative for $4 < x < 12$

Section 2.3
4: (a) $f(200) = 350$ means that it costs $350 to produce 200 gallons of ice cream; (b) $f'(200) = 1.4$ means that when the number of gallons produced is 200, it costs $1.4 to produce an additional gallon.
20: (a) $f(140) = 120$ means that a patient weighing 140 pounds should receive a dose of 120 mg; $f'(140) = 3$ tells us that if the weight of a patient increases by 1 pound (from 140 pounds), the dose should be increased by 3 mg; (b) $f(145) \approx 120 + 3 \times 5 = 150$ mg.
22: $f(22) \approx f(20) + f'(20) \cdot 2 = 345 + 6 \cdot 2 = 357$.

Section 2.4
2: $f'(x) > 0$, $f''(x) > 0$.
4: $f(x) < 0$, $f''(x) = 0$.
10: $f'(t) > 0$ on the intervals $0 < t < 0.4$ and $1.7 < t < 3.4$; $f'(t) < 0$ on the intervals $0.4 < t < 1.7$ and $3.4 < t < 4$; $f''(t) > 0$ on the interval $1 < t < 2.6$; $f''(t) < 0$ on the intervals $0 < t < 1$ and $2.6 < t < 4$.
20: (a) $f(x) < 0$ at x_4 and x_5; (b) $f'(x) < 0$ at x_3 and x_4; (c) $f(x)$ is decreasing at x_3 and x_4; (d) $f'(x)$ is decreasing at x_2 and x_3; (e) slope of $f(x)$ is positive at x_1, x_2 and x_5; (f) slope of $f(x)$ is increasing at x_1, x_4 and x_5.

Review for Chapter 2
10:

![Graph showing $f'(x)$]

18: $f(26) \approx f(25) + f'(25) \times 1 = 3.4$; $f(30) \approx f(25) + f'(25) \times 5 = 2.6$.

5
#20: (a) $f(1800) = 155$: consuming 1800 Calories per day results in a weight of 155 pounds; $f'(2000) = 0$: consuming 2000 Calories per day causes neither weight gain nor loss; (b) units of dW/dc are pounds/(Calories/day).

Section: Focus on Theory (Chapter 2, pp. 135 – 140)

#10: $0 \leq x \leq 2$: NO, $0 \leq x \leq 0.5$: YES.

#16: YES.

#24:

$$f'(x) = \lim_{h \to 0} \frac{5(x + h) - 5x}{h} = \lim_{h \to 0} 5 = 5.$$

#32:

$$f'(x) = \lim_{h \to 0} \frac{2(x + h)^2 + (x + h) - 2x^2 - x}{h}$$

$$= \lim_{h \to 0} \frac{4xh + 2h^2 + h}{h} = \lim_{h \to 0} (4x + 2h + 1) = 4x + 1.$$

Section 3.1

#4: $y' = -12x^{-13}$.

#14: $y' = 24t^2 - 8t + 12$.

#16: $y' = -12x^3 - 12x^2 - 6$.

#24:

$$y' = 2z - \frac{1}{2z^2}.$$

Section 3.2

#6: $f' = 5 \cdot 5^x \ln(5) + 6 \cdot 6^x \ln(6)$.

#16:

$$y' = (\ln 10) \cdot 10^x - \frac{10}{x^2}.$$

#18: $D' = -1/p$.

#22: $f' = Ae^t + B/t$.

#26: $f(0) = 1040$ megawatts; $f(15) = 1040 \cdot (1.3)^{15} = 53,233$ megawatts; $f'(0) = 1040 \ln(1.3) = 273$ megawatts/year; $f'(15) = 1040 \cdot \ln(1.3) \cdot (1.3)^{15} = 13,967$ megawatts/year.

Section 3.3

#6: $w' = 15 \cdot (5r - 6)^2$.

6
16: \[f' = 30e^{5x} - 2xe^{-x^2} \].

22: \[f' = \frac{2t}{t^2 + 1} \].

30: \[y' = 2(5 + e^x)e^x \].

38: \(f(4) = 27e^{-0.14(4)} = 15.4 \) ng/ml; \(f'(4) = -3.78e^{-0.14(4)} = -2.16 \) ng/ml per hour.

Section 3.4

8: \(y' = e^t(t^2 + 2t + 3) \).

16: \[f' = \frac{e^{-z}}{2\sqrt{z}} - \sqrt{z}e^{-z} \].

26: \[y'(x) = \frac{e^x}{(1 + e^x)^2} \].

28: \[y'(z) = \frac{z\ln z - 1 - z}{z(\ln z)^2} \].

Section 3.5

6: \(y' = 5\cos x - 5 \).

8: \(R' = 5\cos(5t) \).

14: \(y' = 12\cos(2t) - 4\sin(4t) \).

Review for Chapter 3

8: \(s' = 15t^2 - 2t + 20 \).

20: \(R' = 5(\sin t)^4 \cdot (\cos t) \).

36: \[h' = \frac{2p}{(3 + 2p^2)^2} \].

Section 4.1

8: \(f'(x) = 3x^2 - 6 \), and thus, \(f'(x) = 0 \) at \(x = \pm\sqrt{2} \). \(f'(x) \) changes from positive to negative at \(x = -\sqrt{2} \), and so there is a local maximum at \(x = -\sqrt{2} \). \(f'(x) \) changes from negative to positive at \(x = +\sqrt{2} \), and so there is a local minimum at \(x = +\sqrt{2} \).
12: \(f'(x) = \ln x + 1 \), so \(f'(x) = 0 \) when \(\ln x = -1 \), that is, for \(x = e^{-1} \approx 0.37 \). This is the only place where \(f' \) changes sign. Since \(f''(1) > 0 \), the function \(f \) increases for \(0 < x < e^{-1} \) and increases for \(x > e^{-1} \). Thus, we have local minimum at \(x = e^{-1} \).

Section 4.2

16: critical points at \(x = 1 \) (local min) and at \(x = 0 \) (neither min nor max); inflection points at \(x = 0 \) and at \(x = 2/3 \).

Section 4.3

22: Local and global maximum at \(x = 2 \).

30:

\[\frac{dE}{dF} = 0.25 - \frac{2 \cdot (1.7)}{F^3} = 0, \]
thus,

\[F = \left(\frac{2 \cdot (1.7)}{0.25} \right)^{1/3} = 2.4 \text{ hours.} \]

This gives a local and global minimum.

44: (a) At \(t = 0 \) we have \(q(0) = 0 \); (b) Maximum value occurs at \(t = \ln 2 = 0.69 \) (where \(q'(t) = 0 \)); maximum value is \(q(\ln 2) = 5 \text{ mg} \); (c) as \(t \to \infty \) we have \(q(t) \to 0 \).

Section 4.4

2: Profit function is positive for \(5.5 < q < 12.5 \) (when \(R(q) > C(q) \)), and negative for \(0 < q < 5.5, q > 12.5 \) (when \(R(q) < C(q) \)). Profit maximized when \(R(q) > C(q) \) and \(R'(q) = C'(q) \) which occurs at about \(q = 9.5 \).

16: Profit is maximized at \(q = 75 \); profit = \(R(75) - C(75) = 6875 \).

Section 4.8

6: (a) At peak concentration \(C'(t) = 0 \); corresponding \(t = 1/0.03 = 33.3 \text{ minutes} \); \(C(33.3) \approx 245 \text{ ng/ml} \); (b) after 15 min \(C(15) \approx 191 \text{ ng/ml} \); after one hour \(C(60) \approx 198 \text{ ng/ml} \).

Review for Chapter 4

8: (a) Increasing for all \(x \). (b) No max or min.

10: (a) Decreasing for \(x < -1 \); \(0 < x < 1 \); increasing for \(x > 1 \); \(-1 < x < 0 \). (b) \(f(-1) \) and \(f(1) \) are local minima; \(f(0) \) is a local maximum.
Section 7.1
6: \(t^8/8 + t^4/4 + C \).
14: \(\frac{2}{3} z^{3/2} + C \).
18: \ln |z| + C.
46: \(\frac{e^{2t}}{2} + C \).
50: \(2x^4 + \ln |x| + C \).

Section 7.2
4: \(e^{5t^2} + C \).
12: \(\frac{1}{6} (x^2 + 3)^3 + C \).
20: \(-\frac{1}{8} (\cos \theta + 5)^8 + C \).
34: \(\frac{1}{2} \ln (y^2 + 4) + C \).
36: \(2e^{\sqrt{y}} + C \).
38: \ln (2 + e^x) + C.

Section 7.3
6: \[\int_1^4 \frac{1}{\sqrt{x}} \, dx = 2. \]
10: \[\int_1^2 5t^3 \, dt = \frac{75}{4}. \]
22: \[\int_0^2 x(x^2 + 1)^2 \, dx = \frac{62}{3}. \]

Section 5.3
2: Area = 8.
4: Negative.

6: Zero.

16: (a) 13; (b) −2; (c) 11; (d) 15.

Section 5.4

4: The change in velocity between times \(t = 0 \) and \(t = 6 \) hours; it is measured in km/hr.

12: 2627 acres.

Section 5.5

6: The fixed cost is $500. Total variable cost is \(\approx $866.7 \). Total cost is $500 + $866.7 = $1,366.7.

Review for Chapter 5

10:

\[\int_{1}^{5} (x^2 + 1)dx = \left(\frac{x^3}{3} + x \right) \bigg|_{1}^{5} \approx 45.33. \]

14:

\[\int_{1}^{3} (z + 1/z)dz = \left(\frac{z^2}{2} + \ln(z) \right) \bigg|_{1}^{3} \approx 5.10. \]

32: Since \(f(x) = \sqrt{1+x^4} \) is increasing for \(0 \leq x \leq 2 \), we have

\[\int_{0}^{2} f(0)dx \leq \int_{0}^{2} f(x)dx \leq \int_{0}^{2} f(2)dx, \]

so that

\[2 = \int_{0}^{2} dx \leq \int_{0}^{2} f(x)dx \leq \int_{0}^{2} 3dx = 6. \]

36: Total cost is 4,250,000 riyals.
Section 6.1

2:
Average value \[= \frac{1}{3} \int_0^3 f(x)dx = 8.\]

4: Average value = 2.
6: Average value \(\approx 2202.55.\)
12(a): Average inventory \(\approx 527.25.\)
22: \((c) < (a) < (b).\)

Section 7.4

6:

\[F(0) = 1, \quad F(0) = 0, \quad F(1) = -1, \quad F(3) = 7, \quad F(1) = -1, \quad F(4) = 5.\]

Review for Chapter 7

6:
\(\ln |x| - \frac{1}{x} - \frac{1}{2x^2} + C.\)

20: \(3 \sin(x) + 7 \cos(x) + C.\)
36: \(\sqrt{x^2 + 4} + C.\)

Section 10.1

2: (a) (III); (b) (V); (c) (I); (d) (II); (e) (IV).
8: Rate of change of \(B = \text{Rate in} - \text{Rate out}:\)

\[\frac{dB}{dt} = 0.04B - 200.\]

Section 10.2

16: E.
18: A.
22: (a) II; (b) I.

Section 10.4

2: \(w = 30e^{3r} \).
4: \(Q = 50e^{t/5} \).
6: \(p = 164.87e^{-0.1q} \).

Section 10.5

4: \(P = 104e^t - 4 \).
6: \(Q = 400 - 350e^{0.3t} \).